<u>YEAR III</u> SEMESTER - VI

Biomedical Digital Signal Processing BEG 3B5 BM

SN	Chapters	Descriptions	Time	Hours	Weight
			,Hrs		
1	Unit 1. Introduction	Signal	0.5	5	8
	to Signal and	Unit Impulse			Marks
	System	Unit Step Signal			
		Unit Ramp Signal			
		Exponential Signal			
		Sinc Signal			
		• Harmonic signal			
		Rectangular Pulse			
		• Triangular Pulse			
		Types of Signal	0.5	-	
		• Causal Signal, non causal anti			
		Anti Causal			
		• Analog, Discrete and Digital			
		Periodic and Non-Periodic			
		• Energy type and Power Type			
		ECG Signal Characteristics	0.5		
		Basic sampling theorem	1	-	
		Analog to Digital Conversion			
		Digital to Analog Conversion			
		• Sampling of Analog Signal			
		 Relation between Analog 			
		Frequency and Digital			
		Frequency			
		 Range of Analog 			
		frequency			
		 Range of Discrete 			
		frequency			
		System	1.5		
		Introduction			
		Memory less system			
		Linear System			
		Time Invariant System			
		• FIR and IIR System			
		Recursive and non-recursive			
		system			
		Convolution summation of Biomedical	0.5		
		discrete systems to discrete inputs			
		Derivation			
		Properties of Convolution			
		Properties of LTI			
		Stability of biomedical system with	0.5		
		reference to convergence of Power			
		series			
		Introduction			
		 Necessary and sufficient 			
		condition			

Micro Syllabus

		• Example of stable system			
2	Unit 2. Difference	Review of Z-transform	3.5	5	14
	Equation and	Introduction			Marks
	Frequency Response	• Z-transform of			
		 Delta 			
		 Unit step 			
		 Ramp 			
		 Sinc 			
		 exponential 			
		Properties			
		• Linear			
		Associative			
		Commutative			
		• Distributive			
		• Shifting			
		Multiplication			
		Convolution			
		Z-Plane Plot and Region of convergence			
		Inverse Z-transform			
		• Power series			
		Standard form			
		General form of the linear Shift	0.5		
		invariant constant coefficient difference	0.5		
		equation-signal flow graph			
		representation			
		Steady state and transient response to	1		
		sinusoidal, periodic and ECG Signal			
		Introduction			
		Derivative			
		• Examples			
3	Unit 3. Basic of	Introduction	0.5	5	10
	Digital Filter	Elements of Digital Filter	0.5		Marks
		• Delay			
		Multiplier			
		Adder			
		Types of Digital Filter	0.5		
		Finite Impulse Response	0.0		
		 Infinite Impulse Response 			
		Structure of Digital Filter	3		
		• Cascaded and Parallel	5		
		 Caseaded and Taraner Direct form-I 			
		 Direct form-II 			
		• Lattice and Lattice Ladder			
		 Eather and Eather Eadder FIR 			
		 IIR 			
		Z-plane pole and zero plot	0.5	1	
		Condition of stability	0.0		
4	Unit 4:FIR Filter	Characteristics of FIR filters	0.5	7	20
'	Design	Ideal filter	0.5	,	Marks
		Practical Filter			1.14110
		Gibh's Phenomena			
		Smoothing filter	0.5		
1	1		0.5	1	1

		Introduction			
		Notch filter			
		Introduction			
		Window design:	4		
		• Design with structure of Linear			
		phase FIR filter using			
		 Rectangular 			
		 Bartley 			
		 hanning 			
		 hamming 			
		 and Kaiser 			
		Frequency sampling	1		
		Derivation			
		• Example			
		• Equiripple filter			
		FIR filter design using the Remez	1		
		exchange algorithm			
		Derivation			
		Algorithm			
5	Unit 5. IIR Filter	Classical filter design using polynomial	1.5	6	12
	Design	approximations-Butterworth,			Marks
		Chebychev, elliptic			
		Butterworth filter			
		 Derivation for cutoff 			
		frequency,			
		 order of filter 			
		 analog equation 			
		Chabychev Filter			
		 Introduction 			
		 order of filter 			
		Elliptic Filter			
		Introduction			
		 Order of Filter 			
		IIR filter design by transformation	1		
		Matched Z- transform, impulse invariant			
		transform and bilinear transform			
		• Derivation			
		• Formula to convert s domain to Z			
		domain			
		Application of the bilinear transform to	1.5		
		IIR low pass discrete filter Design			
		Spectral transformations, High pass,	1		
		band pass and notch filters			
		Continuous Equation for			
		converting			
		 Low Pass filter to High 			
		pass			
		 Low Pass filter to Band 			
		pass			
		 Low Pass filter to Band 			
		Reject pass			
		Discrete Equation for			

		 Low Pass filter to High pass Low Pass filter to Band pass 			
		 Low Pass filter to Band Reject pass 			
6	Unit 6. Discrete	Derivation	1	6	13
	Fourier Transform	DFT as linear transform	1		Marks
		Computation of DFT			
		Computation of IDFT			
		Properties	0.5		
		Periodicity			
		Linearity			
		Multiplication			
		Circular Convolution			
		Correlation	0.5		
		Definition			
		Example			
		Fast Fourier transform	2.5		
		• Radix 2 Dissemination in			
		Time(DIT) up to 8 sample data			
		Radix 2 Dissemination in			
		Frequency (DIF) up to 8			
		sampling data	0.5		
		Power spectrum estimation	0.5		
		Introduction			
7	Unit 7 Signal	Example Decis of signal averaging	0.5	2	2
/	Averaging	Dasic of signal averaging	0.5	2	3
	Averaging	• Background			
		• need Typical of Signal averaging	1		
		Derivation for reduction of noise	1		
		• Derivation for reduction of horse	0.5		
		Limitation of signal averaging	0.5		
8	Unit & Data	Turning point algorithm	1	5	5
0	Reduction	Algorithm	1	5	5
	Techniques	Fxample			
	1	Fan Algorithm	1		
		Algorithm	-		
		Fxample			
		AZTEC algorithm	1		
		Algorithm	-		
		• Example			
		Huffman Coding	2	1	
		Algorithm			
		• Example			
9	Unit 9 Real Time	Introduction and need	1	5	5
	Biomedical System	Real time ECG processing	4	1	
		Power spectrum ECG Signal			
		• A QRS detection algorithm			
		Subtraction			

	MatchedDifferentiation Technique			
		Total	45	80

Laboratory:

- Introduction of signal-plot and analysis of different biomedical signals
- Response of recursive (IIR) digital filter- for ECG Analysis
- Scaling, dynamic range and noise behavior of a recursive digital filter, observation of nonlinear precision effects.
- Response of a non recursive (FIR) for Domain Analysis of ECG
- Use of DFT and FFT transforms of ECG frequency
- Signal averaging: ECG Signal Averaging
- Data Reduction Technique: ECG Data reduction Algorithm

Text Book:

- 1. Willis J Tompkins, Editor, "Biomedical Digital Signal Processing", Prentice Hall of India, 1995
- 2. John G. Proakis and Dimitris G. Manolakis, "Digital Signal Processing"

Reference:

A.V. Oppenheim, "Discrete- Time Signal Processing", Prentice Hall, 1990

Prepared by: Achyuta Nand Mishra Semester VI

III

1.0

BIOMEDICAL INSTRUMENTATION I BEG 3B4 BM

COURSE OBJECTIVE: To provide specific engineering and instrumentation methods and principles to the task of

biomedical instruments.

Fundamental of Medical Instrumentation:

obtaining basic knowledge of design, application and maintenance of different

Year

(4

hours) 1.1 Anatomy and Physiology 1.2 Physiological System of the Body Sources of Biomedical Signals 1.3 **Resting Potential** 1.3.1 1.3.2 Action Potential 1.3.3 Waveforms of Resting and Action Potential 1.4 **Basic Medical Instrumentation System** 1.5 Biometrics and Design Consideration Factors of Medical Instruments 1.5 Man Instrument System and their Objectives 1.6 Components of Man Instrument System Biomedical Engineering and Areas of Engineering Contributions 1.7 2.0 (4 **Bioelectric Signals and Electrodes:** hours) 2.1 Origin of Bioelectric Signals 2.2 Electrodes 2.2.1 Electrode Theory 2.3 Types of Recording Electrodes Electrodes for ECG Recording 2.3.1 2.3.2 Electrodes for EEG Recording 2.3.3 Electrodes for EMG Recording 2.4 Electrical Conductivity of Electrodes and Electrode Jellies 2.5 Micro Electrodes 2.6 **Bio Chemical Electrodes** 3.0 **Physiological Transducers:** (4 hours) 3.1 Classification of Transducers 3.2 Performance Characteristics of Transducers 3.3 Active Transducers and their Application in Medical Instruments 3.3.1 Piezoelectric Transducer 3.3.2 Equivalent Circuit of Piezoelectric Transducer 3.4 Passive Transducers and their Application in Medical Instruments 3.4.1 Pressure Transducers 3.4.2 Transducers for the Body Temperature Measurement 3.5 **Biosensors** 4.0 **Biomedical Recorders and Recording System:** (9 hours) 4.1 Aspects of Bioelectric Signals 4.2 Electrocardiography (ECG) 4.2.1 Normal Characteristics of Electrocardiogram 4.2.2 ECG Lead Configuration and Recording Techniques 4.2.3 Computer -Aided Electrocardiograph Analysis **Digital Recorders** 4.2.4 4.3 Electroencephalography (EEG) Electroencephalogram and Evoked Potential 4.3.1 4.3.2 EEG Pre amplifier Design 4.3.3 EEG Electrode Configuration and Recording Techniques 4.3.4 Practical Details of EEG 4.4 Electromyography (EMG) 4.4.1 Electromyography Recording Technique 4.4.2 Applications of EMG 4.5 Sources of Noise in Low Level Measurement 4.6 **Direct Writing Recorders** The Inkjet Recorders 4.7

5.0 Patient Monitoring Systems:

- 5.1 System Concept
- 5.2 Cardiac Monitor
 - 5.2.1 Measurement of Heart Rate
 - 5.2.2 Measurement of Pulse Rate
 - 5.2.3 Measurement of Respiration Rate
 - 5.2.3.1 Thermistor Method
 - **5.2.3.2** Impedance Pneumography
 - **5.2.3.3** Apnoea Detectors
 - 5.2.4 Measurement of Blood Pressure
 - 5.2.5 Measurement of Temperature
- 5.3 Bedside Patient Monitoring Systems
- 5.4 **Central Monitors**
 - 5.4.1 Central Monitoring Station for ICU Beds
- 5.5 Catheterization Laboratory Instrumentation

6.0	Arrhy	thmia and Ambulatory Monitoring Instruments:	(3 hours)
	6.1 6.2	 Cardiac Arrhythmia 6.1.1 Basic Arrhythmia Monitoring System 6.1.2 Detection of Ventricular Fibrillation Ambulatory Monitoring Instruments 	
7.0	Foetal 7.1 7.2 7.3	Monitoring Instruments: Cardiotocograph FHR Measurement from Ultrasound Doppler Foetal Signal Labour Activity Monitoring	(4 hours)
8.0	Biome	edical Telemedicine and Telemetry:	(3 hours)
	8.1 8.2 8.3 8.4 8.5 8.6	 Wireless Telemetry Single Channel Telemetry Systems 8.2.1 The Components of Biotelemetry System Multi channel Wireless Telemetry Systems 8.3.1 Telemetry of ECG and Respiration Implantable Telemetry System 8.4.1 Implantable Blood Flow meter Digital Landline Telemetry System Telemedicine 8.6.1 Application of Telemedicine Technology 8.6.2 Telemedicine Using Mobile Communication 8.6.3 Digital Imaging and Communication in Medicine 	
9.0	Oxime 9.1 9.2	eters: Oximetry Pulse Oximeter 9.2.1 Analog to Digital Signal Processing by Pulse Oximetry	(2 hours)
	9.2 9.3	Pulse Oximeter 9.2.1 Analog to Digital Signal Processing by Pulse Oximetry Photo electric Pulse Transducer	

- Photo electric Pulse Transducer
 - 9.3.1 Transmittance Method
 - **Reflectance Method** 9.3.2

10.0 **Blood Flowmeters:**

- **Blood Flow Measurement Principle** 10.1
- 10.2 Types of Blood Flowmeters
 - **10.2.1** Electro magnetic Blood Flowmeter
 - Ultrasonic Blood Flowmeter 10.2.2
 - 10.2.3 NMR Blood Flowmeter
 - **10.2.4** Blood Flow Determination by Radiographic Methods

(3 hours)

(4 hours)

11.0 **Cardiac Output Measurement:**

- 11.1 Cardiac Output
 - 11.1 Stroke Volume
 - 11.2 Minute Volume
- 11.2 Methods to Measure Cardiac Output
- 11.3 Measurement of Continuous Cardiac Output
 - Impedance Technique 11.3.1
 - 11.3.2 Ultrasound Technique

11.3.3 Thermal Dilution Technique

12.0 Pulmonary Function Analyzers:

- **12.1** Pulmonary Function Measurement
 - **12.1.1** Respiratory Volumes
 - **12.1.2** Respiratory Capacities
- 12.2 Spirometry
- **12.3** Pneumotachometers
- **12.4** Pulmonary Function Analyzers
- **12.5** Respiratory Gas Analyzers

Laboratory: 1. Introduction to Sensors and Types

- 2. Blood groups and its Cross- Matched
- **3.** Pulse Oximetry
- 4. Electrocardiography
- **5.** Electrencephalography
- **6.** Electromyography

Textbook: Handbook of Biomedical Instrumentation, R S Khandpur, Tata Mc-Graw Hill **Reference Book:** Biomedical Instrumentation and Measurements, Leslie Cromwell, et AI, Prentice Hall India

Chapter	Lecture Hours	No of Questions	Marks
Fundamental of Medical	4	1	8
Instrumentation			
Bioelectric Signals and	4	1	8
Electrodes			
Physiological Transducers	4	1	8
Biomedical Recorders and	9	1	8
Recording System			
Patient Monitoring	4	1	8
Systems			
Arrhythmia and	3	1	8
Ambulatory Monitoring			
Instruments			
Foetal Monitoring	4	1	8
Instruments			
Biomedical Telemedicine	3	0.5	4
and Telemetry			
Oximeters	2	0.5	4
Blood Flowmeters	3	1	8
Cardiac Output	4	0.5	4
Measurement			
Pulmonary Function	4	0.5	4
Analyzers			
Total	48	10	80

Marks Distribution:

Prepared by: Bikash B. Shrestha, M.Tech. (Senior Biomedical Engineer) Mobile: 9851038698

(4 hours)

Engineering Economics BEG 2C1 BM

Se	mester	· VI									Year III
Γ	Teaching Schedule		Examination Schedule								
	Hours/Week				Fir	nal		Int	ernal	КΗ	Rei
							Assessment		ota [ark	ma	
			Theo	ory	Pract	ical	Theory	Practical	CS LL	rks	
							Marks	Marks			
	L	Т	Р	Duration	Marks	Duration	Marks				
	3	1	-	3	80	-	-	20	25	125	

COURSE OBJECTIVE:

- To provide the students a knowledge of the basic tools and methodology of economic studies for evaluating engineering project in private industry, in the public sector and in the utilities areas.
- 1. Introduction
 - 1.1 Businesses and accounting terminology
 - 1.1.1 Definition of Economics
 - 1.1.2 Why Engineering Economics
 - 1.1.3 Essential Economic Terminology
 - 1.2 Cash flow
 - 1.2.1 Definition & diagram
 - 1.3 Economic systems
 - 1.3.1 Capitalistic Economic System
 - 1.3.2 Pure Socialistic System
 - 1.3.3 Mixed Economic System
- 2. Cost Classification and analysis

(5 hr)

- 2.1 The elements of cost: Material, Labor & Expenses
- 2.2 Classification of cost: Overhead, prime cost
- 2.3 Cost variance analysis
- 2.4 Job and process costing
- 3. Interest and the time value of money
 - 3.1 Simple interest, compound, interest tables, interest charts
 - 3.2 Present worth
 - 3.3 Nominal and effective interest rates
 - 3.4 Continuous compounding and continuous compounding formula
 - 3.5 Interest calculation for uniform gradient
- 4. Basic Methodologies of Engineering Economic Studies

(7 hr)

- 4.1 Present worth and annual worth methods
- 4.2 Future worth method
- 4.3 Internal rate of return method
- 4.4 Drawbacks of the internal rate of return method
- 4.5 External rate of return method
- 4.6 Minimum attractive rate of return method
- 4.7 The payback (payout) period method
- 5. Cash/Benefit Analysis

5.1 Conventional Cost/Benefit ratio

(6 hr)

(3 hr)

5.2 Modified Cost/Benefit ratio	5.	.2	Modified	Cost/Benefit	ratio
---------------------------------	----	----	----------	--------------	-------

5.3 Break even analysis

6.	Investment Decisions	(8 hr)
	6.1 Comparison of alternatives having some useful life6.2 Comparison of alternatives having different useful life	
	6.3 Comparison of alternatives including & excluding time value of money	
	6.5 Definition of mutually exclusive investment alternatives in terms of cor	nbination
	of projects	
	6.6 Comparison of mutually exclusive alternatives	
7.	Risk Analysis	(4 hr)
	7.1 Projects operating under conditions of certainty	
	7.2 Projects operating under conditions of uncertainty	
	7.3 Decision tree	
	7.4 Sensitivity analysis	
8.	Taxation System in Nepal	(3 hr)
	8.1 Taxation law in Nepal	
	8.2 Depreciation rates for building, equipment, furniture	
	8.3 Recaptured depreciation	
	8.5 Taxes on capital gains	
	8.6 VAT	
9.	Demand Analysis and sales forecasting	
	(5 hr)	
	9.1 Demand analysis	
	9.2 Correlation of price and consumption rate	
	9.3 Market research	
	9.4 Sales forecasting	

- 9.5 Criteria for desirable sales forecasting procedures9.6 Factors affecting accuracy of forecasting

Marks Distribution:

Chapter	Lecture Hours	No. of Questions	Marks
Introduction	3	1	5
Cost Classification	5	1	8
and Analysis			
Interest and Time	6	2	12
Value of money			
Basic Methodologies	7	2	12
of Engineering			
Economic Studies			
Cash/Benefit analysis	4	1	5
Investment Decisions	8	2	16
Risk Analysis	4	1	8
Taxation System in	3	1	6
Nepal			
Demand Analysis and	5	1	8
sales forecasting			
Total	45	10 (one choice)	80

MEDICAL IMAGING- I (BEG 3B3 BM)

	Se	emest	er VI		-	-			Year III	
Teaching			Examination Schedule							Я
Schedule				Fi	nal		Internal A	Assessment	ta l	lem
Hours/Week		eek	Theo	ory	Pract	ical	Theory Marks	Practical Marks	Marks	larks
L	Т	Р	Duration	Marks	Duration	Marks				
3	1	2	3	80			20	25	125	

Course Objective:

The main objective of this course is to provide the students with the fundamental knowledge on Medical Imaging Physics and knowledge on the working principle of different medical imaging equipment.

1.	Basic Pri	2Hrs	
	1.1 In	troduction to Medical Imaging Science	
	1.2 Di	fferent types of Medical Imaging Modalities	
2.	Radiation	7Hrs	
	2.1 Re	eview of electricity	
	2.2 Tr	ansformers	
	2.3 Th	nermionic emission and rectifiers	
	2.4 Re	eview of Atomic structure	
	2.5 Ra	adioactivity	
	2.6 El	ectromagnetic radiation	
3.	X-rays		15Hrs
	3.1 Hi	storical background	
	3.2 Pr	oduction of x-rays	
	3.2.1	Phenomena of x-ray production	
	3.2.2	Bremsstrahlung x-rays	
	3.2.3	Characteristic x-rays	
	3.2.4	Factors affecting production of x-rays	
	3.3 In	teraction of radiation with matter	
	3.3.1	Compton scattering	
	3.3.2	Photoelectric absorption	
	3.3.3	Differential absorption	
	3.4 Measu		
	3.5 Radia	tion Protection	
	3.5.1	Basic radiation units	
	3.5.2	Introduction to Radiobiology	
	3.5.3	Biological effects of radiation	
	3.5.4	Principles of radiation protection	
	3.5.5	ICRP recommendations	
	3.5.6	Introduction to personnel monitoring	
	3.6 Contro		
	3.6.1	Scatter radiation and its significance	
	3.6.2	Methods of scatter radiation control	

- 3.6.3 Control of scatter radiation produced
- 3.6.4 Control of scatter radiation reaching to the film
- 3.6.5 X-ray grid
- 3.6.6 Grid characteristics

- 3.6.7 Types of grid
- 3.6.8 Grid faults
- 3.6.9 Air gap technique

4. X-ray Equipment

- 4.1 X-ray tubes
 - 4.1.1 Historical development
 - 4.1.2 Types of x-ray tubes
 - 4.1.3 Construction of rotating anode x-ray tube
 - 4.1.4 Line focus principle
 - 4.1.5 Anode heel effect
 - 4.1.6 Off focus radiation
 - 4.1.7 X-ray tube housing
 - 4.1.8 Filtration
 - 4.1.9 X-ray tube rating charts
 - 4.1.10 X-ray tube faults
- 4.2 X-ray control and indicating equipment
 - 4.2.1 Line voltage compensation
 - 4.2.2 Control of kVp
 - 4.2.3 Control of mA
 - 4.2.4 Control of exposure time
 - 4.2.5 Exposure timers
- 4.3 Introduction to different types of x-ray equipment
 - 4.3.1 Portable and mobile x-ray units
 - 4.3.2 Fluoroscopic equipment
 - 4.3.3 Mammography units

5. Radiographic Imaging

- 5.1 Photographic principle
- 5.2 Film materials
 - 5.2.1 Historical background of x-ray film and its construction
 - 5.2.2 Duplitized x-ray film construction
 - 5.2.3 Spectral sensitivity
 - 5.2.4 Films for digital imaging
- 5.3 Intensifying screen
 - 5.3.1 Fluorescence and phosphorescence
 - 5.3.2 Phosphors used for Intensifying screens
 - 5.3.3 Types of Intensifying screen and their application
 - 5.3.4 X-ray cassettes
- 5.4 Radiographic processing
 - 5.4.1 Manual film processing
 - 5.4.2 Different steps in film processing
 - 5.4.3 Automatic film processing
 - 5.4.4 Introduction to dry film processing
- 5.5 Radiographic Image
 - 5.5.1 Photographic density
 - 5.5.2 Radiographic Contrast and factors affecting contrast
 - 5.5.3 Image sharpness and factors affecting sharpness
 - 5.5.4 Image Resolution
- 5.6 Exposure factors
- 5.7 Image quality control

12Hrs

10Hrs

6. Basics of Radioisotope Imaging

- 6.1 Types of radioactivity
- 6.2 Radionuclide/radiopharmaceuticals
- 6.3 Mo-99/Tc-99m Generator
- 6.4 Principle of Gamma camera
- 6.5 SPECT and PET

Textbook:

1. Physics for Medical Imaging, FR Farr and PJ Allisy-Roberts

Chapter	Lecture Hours	No. of Questions	Marks
Basic principle of	2	1	5
Medical Imaging			
Radiation Physics	7	2	10
X-Rays	15	2-4	20
X-Ray equipment	10	2-3	15
Radiographic Imaging	12	2-4	20
Basics of radio-isotope	5	1-2	10
imaging			
Total	51	10	80

Marks Distribution

TISSUE DEVICE INTERACTIONS BEG 3B2 BM

S	emeste	er VI								ear III
Т	Feaching		Examination Schedule						Ţ	
Schedule Hours/Week			Final	Internal Assessment		tal	Rem			
		Т	Theory		Practical		Practical Marks	Marks	ıarks	
L	Т	Р	Duration	Marks	Duration	Marks				
3	1		3	80			20		100	

ding tissues after implantation in human body.

L	Т	Р	Duration	Marks	Duration	Marks				
3	1		3	80			20	1	00	
COURSE OBJECTIVE: To provide knowledge of interactions between biomaterials and surroun										

1. Introduction to Tissue-Device Interactions and Their Importance: (1 hour)

- 1.1. Body Environment
- 1.2. Interactions
- 1.3. Implantations
- 1.4. Degree of host reaction

2. Inflammation, Wound Healing and Foreign Body Response:

(10 hours)

- 2.1. Inflammation
 - 2.1.1. General Introduction
 - 2.1.2. Sequence of Host Reaction
 - 2.1.3. Diagrammatic representation of inflammation in response to tissue injury
 - 2.1.4. Events following implantation
 - 2.1.5. Mediators
- 2.2. Acute Inflammation
 - 2.2.1. General
 - 2.2.2. Sequence of leukocyte events
 - Margination 2.2.2.1.
 - Pavementing 2.2.2.2.
 - 2.2.2.3. Emigration
 - 2.2.2.4. Chemotaxis
 - 2.2.2.5. Phagocytosis
 - 2.2.2.6. Intracellular killing and degradation (Oxygen-dependent & independent)
- 2.3. Chronic Inflammation
 - 2.3.1. General
 - 2.3.2. Lymphocytes and chronic inflammation
 - 2.3.3. Macrophages in chronic inflammation
 - 2.3.4. Role of biomaterials
 - 2.3.5. Macrophages and cytokines
 - 2.3.6. Foreign body giant cells
- 2.4. Granulation Tissue
 - 2.4.1. Neovascularization
 - 2.4.2. Different factors in the development of granulation tissue, wound healing of first and secondary intention
- 2.5. Foreign body reaction
 - 2.5.1. Different factors/cells involved
- 2.6. Fibrosis and fibrous encapsulation
- 2.7. Inflammation and wound healing
 - 2.7.1. Repair of implant sites
 - 2.7.2. Different cell types and wound healing
 - 2.7.3. Other factors in wound healing
 - 2.7.4. Role of implants in healing

3. Effect of Biomaterials on Host + Blood-Biomaterials Interaction:

- 3.1. Biochemical response to biomaterials
 - 3.1.1. Protein adsorption
 - 3.1.1.1. Introduction
 - 3.1.1.2. Major plasma proteins
 - 3.1.1.3. Vroman effect for protein adsorption
 - 3.1.2. Coagulation cascade
 - 3.1.2.1. Coagulation
 - 3.1.2.2. Platelet activation
 - 3.1.2.3. Coagualtion pathways- Intrinsic and Extrinsic
 - 3.1.3. Complement cascade
 - 3.1.3.1. Introduction to immune system
 - 3.1.3.2. Complement cascade- Classical and Alternate pathway
 - 3.1.3.3. MAC formation
 - 3.1.3.4. Control mechanisms
 - 3.1.3.5. Functions and actions of complements
- 3.2. Cellular response to biomaterials
 - 3.2.1. Cytokines
 - 3.2.1.1. Introduction
 - 3.2.1.2. Action
 - 3.2.1.3. Various important cytokines
 - 3.2.1.4. Functions and effects of cytokines
 - 3.2.2. Cellular response
 - 3.2.2.1. Fibrinolysis
 - 3.2.2.2. Platelets (Platelet structure Vs. function, Platelet deposition, Protein Vs. platelet)
 - 3.2.2.3. Leukocyte adhesion
 - 3.2.2.4. Cellular ingrowth (Endothelial cells and Smooth muscle cells)
- 3.3. Systemic response to biomaterials
 - 3.3.1. Thrombosis
 - 3.3.2. Anastomotic intinal hyperplasia
 - 3.3.3. Infection

4. Endothelial Cells and Biomaterials:

- 4.1. Introduction
- 4.2. Endothelial cell physiology
 - 4.2.1. Endothelium
 - 4.2.2. Endothelium functions
 - 4.2.2.1. Anticoagulant activity of ECs
 - 4.2.2.2. Procoagulant action of ECs
 - 4.2.3. Endothelial cell adhesive interactions
 - 4.2.3.1. Adhesion to ECM
 - 4.2.3.2. EC adhesion to leukocytes
 - 4.2.3.3. EC adhesion to ECs
- 4.3. Techniques for endothelial cell Harvest and culture
 - 4.3.1. Endothelial cell harvesting
 - 4.3.2. Endothelial cell seeding
 - 4.3.2.1. Seeding just before operation
 - 4.3.2.2. 2 step seeding
 - 4.3.3. Surface modification before EC seeding
 - 4.3.3.1. Through adsorbed molecules (Fibronectin, Collagen, Others)
 - 4.3.3.2. Through functional and reactive groups
 - 4.3.3.3. Combined modifications
- 4.4. Endothelial cell reading studies

(5+5 hours)

(4 hours)

5. The Extracellular Matrix and Biomaterials:

- 5.1. Introduction
 - 5.1.1. ECM
 - 5.1.2. Functions of ECM
 - 5.1.3. ECM in injury
- 5.2. ECM components
 - 5.2.1. Basement membrane components
 - 5.2.2. Intersitial connective tissues
 - 5.2.3. Laminin
 - 5.2.4. Collagen
 - 5.2.5. Hyaluronic acid
 - 5.2.6. Proteoglycans and glycoproteins
 - 5.2.6.1. Heparan sulfate
 - 5.2.6.2. Chondroitin sulfate proteoglycans
 - 5.2.6.3. Keratan sulfate proteoglycans
 - 5.2.6.4. Fibronectin
 - 5.2.7. Elastic fibers
- 5.3. Acute responses in injury or implantation
 - 5.3.1. The provisional matrix
 - 5.3.1.1. Components of provisional matrix
 - 5.3.1.2. Role of fibrin
 - 5.3.2. Resolution and reorganization
 - 5.3.2.1. Fibronectin
 - 5.3.2.2. Heparin
- 5.4. Chronic response
- 5.5. Future challenges

6. Bacteria and Biomaterials:

- 6.1. Introduction
- 6.2. Bacterial virulence factors
- 6.3. Specialties of infections due to biomaterials
 - 6.3.1. Introduction
 - 6.3.2. Infection associated with biomaterial
 - 6.3.3. Implant associated infections
 - 6.3.4. Microorganisms involved in infection
 - 6.3.5. Common infections to particular implants
- 6.4. Nature of microbial adhesion
 - 6.4.1. Molecular mechanisms of microbial adhesion
 - 6.4.2. Microbial adhesion and biofilm formation
 - 6.4.3. Nature of microbial adhesion
- 6.5. Tissue-centered and biomaterial-centered infections
- 6.6. Failure of integration due to infection
- 6.7. Surface modification of biomaterials for control of infection

7. Integrins, Adhesion Molecules and Biomaterials:

- 7.1. Introduction
- 7.2. Types of cell surface receptors
- 7.3. Integrins
 - 7.3.1. Introduction
 - 7.3.2. Beta subfamily
 - 7.3.2.1. ECM integrins (B1 subfamily)
 - 7.3.2.2. Leukocyte integrins (B2 subfamily)
 - 7.3.2.3. Beta-3 (B3 subfamily)

(5 hours)

(7 hours)

(6 hours)

7.4. Cell adhesion molecules (CAMs)

- 7.4.1. Introduction to Adhesion Molecules
- 7.4.2. Types of Adhesion Molecules
- 7.4.3. Immunoglobulin (IgG) superfamily
 - 7.4.3.1. ICAM-1 (also ICAM-2,3,4,5)
 - 7.4.3.2. VCAM-1
 - 7.4.3.3. PECAM-1
- 7.4.4. Selectins
 - 7.4.4.1. E-Selectin
 - 7.4.4.2. P-Selectin
 - 7.4.4.3. L-Selectin
- 7.4.5. Cadherins
- 7.5. Integrins, adhesion molecules and biomaterials
 - 7.5.1. Introduction
 - 7.5.2. Integrins as mediators for cellular interactions with biomaterial surface
 - 7.5.3. Integrin as targets for biomaterial manipulations
- 8. Controlling, manipulating the material/host interactions by changing material, chemistry i.e. surface charge, physical properties eg. shape, topography, porosity and others (3 hours)

Marks Distribution:

Chapter	Lecture Hours	No. of Questions	Marks
Introduction to Tissue-Device Interactions and Their Importance	1	1 short question	0-5
Inflammation, Wound Healing and Foreign Body Response	10	2-3 (1long, 1-2short)	15-20
Effect of Biomaterials on Host + Blood- Biomaterials Interaction	5+5	2-3 (1long, 1-2short)	15-20
Endothelial Cells and Biomaterials	4	1	5-10
The Extracellular Matrix and Biomaterials	5	2 (1long and/or 1short)	5-10
Bacteria and Biomaterials	7	1-2	10-15
Integrins, Adhesion Molecules and Biomaterials	6	1-2	10
Controlling, manipulating the material/host interactions by changing material, Chemistry i.e. surface charge, physical properties e.g. Shape, topography, porosity and others	3	Individual question or may be embedded in other questions	2-5
Total	46	8	80